Matematica (scienze applicate)

Bozza Indicazioni Nazionali Licei
  • LICEO SCIENTIFICO – opzione delle scienze applicate

 

 

PROFILO GENERALE E COMPETENZE

Al termine del percorso liceale lo studente dovrà padroneggiare i principali concetti e metodi di base della matematica, sia aventi valore intrinseco alla disciplina, sia connessi all’analisi di fenomeni del mondo reale, in particolare del mondo fisico. Una caratteristica importante del percorso del liceo scientifico sarà l’interazione dello studio della matematica con le altre discipline scientifiche, tra cui in particolare l’informatica. Questa interazione contribuirà alla loro comprensione e al loro apprendimento fornendo un quadro concettuale e un insieme di tecniche adeguate. D’altro canto, permetterà di connettere le varie teorie matematiche studiate con le problematiche storiche che le hanno originate e di approfondirne il significato.
Lo studente dovrà acquisire una consapevolezza critica dei rapporti tra lo sviluppo del pensiero matematico e il contesto storico, filosofico, scientifico e tecnologico. In particolare, dovrà acquisire il senso e la portata dei tre principali momenti che caratterizzano la formazione del pensiero matematico: la matematica nel pensiero greco, la matematica infinitesimale che nasce con la rivoluzione scientifica del Seicento, la svolta a partire dal razionalismo illuministico che conduce alla formazione della matematica moderna e a un nuovo processo di matematizzazione che ha cambiato il volto della conoscenza scientifica, con particolare riguardo per lo sviluppo degli strumenti automatici di calcolo e di elaborazione delle informazioni.
Di qui i gruppi di concetti e metodi che lo studente dovrà padroneggiare:
1) gli elementi della geometria euclidea del piano e dello spazio entro cui si definiscono i procedimenti caratteristici del pensiero matematico (definizioni, dimostrazioni, generalizzazioni, assiomatizzazioni);
2) gli elementi del calcolo algebrico, gli elementi della geometria analitica cartesiana, le funzioni elementari dell’analisi e le nozioni elementari del calcolo differenziale e integrale, con particolare riguardo per le loro relazioni con la fisica;
3) la conoscenza elementare di alcuni sviluppi caratteristici della matematica moderna, in particolare degli elementi del calcolo delle probabilità e dell’analisi statistica.
Dovrà inoltre avere familiarità con l’approccio assiomatico nella sua forma moderna e possedere i primi elementi della modellizzazione matematica, anche nell’ambito di fenomeni anche di natura diversa da quella fisica. Dovrà conoscere il concetto di modello matematico e la specificità del rapporto che esso istituisce tra matematica e realtà rispetto al rapporto tra matematica e fisica classica. Dovrà essere capace di costruire semplici modelli matematici di insiemi di fenomeni, con un ricorso significativo a strumenti informatici per la rappresentazione e il calcolo. Infine, lo studente dovrà acquisire concettualmente e saper usare elementarmente il principio di induzione matematica, per comprendere la natura dell’induzione matematica e la sua specificità rispetto all’induzione fisica.
Questa articolazione di temi e di approcci costituirà la base per istituire collegamenti concettuali e di metodo con altre discipline come la fisica, le scienze naturali, la filosofia e la storia.
L’ampio spettro di contenuti affrontati richiede che l’insegnante sia consapevole della necessità di un buon impiego del tempo disponibile. Ferma restando l’importanza dell’acquisizione delle tecniche, è necessario evitare dispersioni in tecnicismi ripetitivi o casistiche sterili che non contribuiscono in modo significativo alla comprensione dei problemi. L'approfondimento degli aspetti tecnici, particolarmente necessario nel liceo scientifico, deve sempre essere funzionale alla comprensione in profondità degli aspetti concettuali della disciplina. L’indicazione principale è: pochi concetti e metodi fondamentali, acquisiti in profondità.
Gli strumenti informatici oggi disponibili offrono contesti idonei per rappresentare e manipolare oggetti matematici. L'insegnamento della matematica offre numerose occasioni per acquisire familiarità con tali strumenti e per comprenderne il valore metodologico. Il percorso di questo indirizzo di liceo scientifico è mirato a sviluppare nello studente il pensiero algoritmico e a favorire l'uso dell’informatica, anche in vista del loro utilizzo per il trattamento dei dati nelle altre discipline scientifiche. L’informatica è una risorsa importante, in particolar modo nel liceo scientifico, che dovrà essere introdotta in modo critico, senza creare l’illusione che essa sia un mezzo automatico di risoluzione di problemi e senza compromettere la necessaria acquisizione di capacità di calcolo mentale.

OBBIETTIVI SPECIFICI DI APPRENDIMENTO

PRIMO BIENNIO
Aritmetica e algebra
Il primo biennio sarà dedicato al passaggio dal calcolo aritmetico a quello algebrico. Sarà sviluppata la padronanza del calcolo (mentale, con carta e penna, con strumenti) con numeri interi, con i numeri razionali sia nella scrittura come frazione che nella rappresentazione decimale. In questa occasione sarranno studiate le proprietà delle operazioni. Lo studio dell'algoritmo euclideo permetterà di approfondire la struttura dei numeri interi e di conoscere un esempio importante di procedimento algoritmico. Si introdurranno in maniera intuitiva i numeri reali (con particolare riferimento alla loro rappresentazione geometrica su una retta), acquisendo familiarità con la rappresentazione esponenziale. La dimostrazione dell’irrazionalità di 2 e di altri numeri sarà un’importante occasione di approfondimento concettuale. Lo studio dei numeri irrazionali e delle espressioni in cui compaiono fornirà un esempio significativo di applicazione del calcolo algebrico e un’occasione per introdurre il tema dell'approssimazione. Va evitato il tecnicismo manipolatorio del calcolo dei radicali.
Saranno presentati gli elementi di base del calcolo letterale e si studieranno i polinomi e le operazioni tra di essi, evitando che la necessaria acquisizione di una capacità manipolativa degeneri in tecnicismi addestrativi. Lo studente saprà fattorizzare semplici polinomi e conoscerà il significato e semplici esempi di divisione con resto fra due polinomi, avendo consapevolezza dell’analogia con la divisione fra numeri interi.
Lo studente dovrà essere in grado di eseguire calcoli con le espressioni letterali sia per rappresentare un problema (mediante un'equazione, disequazioni o sistemi) e risolverlo, sia per dimostrare risultati generali, in particolare in aritmetica.
Si introdurrà l'algebra dei vettori, evidenziandone il ruolo fondamentale nella fisica.

Geometria
Nel primo biennio saranno sviluppati i fondamenti della geometria euclidea del piano. In questo contesto sarà chiarita l’importanza e il significato dei concetti di postulato, assioma, definizione, teorema, dimostrazione, mostrando come, a partire dagli Elementi di Euclide, essi abbiano permeato lo sviluppo della matematica occidentale. L'approccio euclideo non deve essere ridotto a metodologia assiomatica, come del resto non è mai stato storicamente.
Al teorema di Pitagora sarà dedicato uno spazio adeguato mettendone in luce gli aspetti geometrici e le implicazioni nella teoria dei numeri (introduzione dei numeri irrazionali) insistendo soprattutto sugli aspetti concettuali.
Saranno approfondite le principali trasformazioni geometriche (traslazioni, rotazioni, simmetrie, similitudini con particolare riguardo al teorema di Talete) e lo studente dovrà saper riconoscere le principali proprietà invarianti. Lo studente approfondirà le proprietà fondamentali della circonferenza.
Saranno sviluppati i primi elementi di rappresentazione delle figure dello spazio.
La realizzazione di costruzioni geometriche elementari sarà effettuata sia mediante strumenti tradizionali (in particolare la riga e compasso, sottolineando il significato storico di questa metodologia nella geometria euclidea), sia mediante programmi informatici di geometria o altre metodologie e tecniche acquisite nel corso di informatica.
Sarà introdotto il metodo delle coordinate cartesiane, in una prima fase limitato alla rappresentazione di punti, rette e fasci di rette nel piano e di proprietà come il parallelismo e la perpendicolarità. Lo studio delle funzioni quadratiche si accompagnerà alla rappresentazione geometrica delle coniche nel piano cartesiano. L’intervento dell’algebra nella rappresentazione degli oggetti geometrici non dovrà essere disgiunto dall’approfondimento della portata concettuale e tecnica di questa branca della matematica.
Saranno inoltre introdotte le funzioni circolari e le loro proprietà e relazioni elementari, anche in vista del loro uso nello studio della fisica.

Relazioni e funzioni
Lo studente saprà utilizzare il linguaggio degli insiemi e delle funzioni, anche per costruire semplici rappresentazioni di fenomeni come primo passo all’introduzione del concetto di modello matematico. In particolare sarà in grado di descrivere un problema con un’equazione, una disequazione o un sistema di equazioni o disequazioni, e di ottenere informazioni e ricavare le soluzioni del problema di una rappresentazione matematica (o modello) di fenomeni, anche in contesti di ricerca operativa.
Lo studio delle funzioni del tipo f(x) = ax + b, f(x) = ax2 + bx + c, e la rappresentazione delle rette e delle parabole nel piano cartesiano consentiranno di acquisire i concetti di soluzione delle equazioni di primo e secondo grado in una incognita, delle disequazioni associate e dei sistemi di equazioni lineari in due incognite, nonché le tecniche per la loro risoluzione grafica e algebrica.
Sarà introdotto il linguaggio delle funzioni (dominio, composizione, inversa, ecc.) e si studieranno e utilizzeranno le funzioni f(x) = |x|, f(x) = a/x, funzioni quadratiche, funzioni lineari a tratti, le funzioni circolari sia in termini strettamente matematici sia in funzione della rappresentazione e soluzione di problemi applicativi. Lo studente saprà utilizzare il linguaggio della proporzionalità diretta e inversa. Il contemporaneo studio della fisica offrirà esempi di funzioni che saranno oggetto di una specifica trattazione matematica, e i risultati di questa trattazione serviranno ad approfondire la comprensione dei fenomeni fisici e delle relative teorie.
Lo studente dovrà essere in grado di passare agevolmente da un registro di rappresentazione a un altro (numerico, grafico, funzionale), anche utilizzando metodologie e tecniche che avrà acquisito nel corso di informatica per la rappresentazione dei dati.

Dati e previsioni
Lo studente dovrà essere in grado di rappresentare e analizzare in diversi modi (in particolare utilizzando strumenti informatici) un insieme di dati, scegliendo le rappresentazioni più idonee.
Dovrà quindi saper distinguere tra caratteri qualitativi, quantitativi discreti e quantitativi continui, lavorare con distribuzioni di frequenze e rappresentarle. Saranno riprese e approfondite le definizioni e le proprietà dei valori medi e delle misure di variabilità; lo studente dovrà esser in grado di utilizzare strumenti di calcolo (calcolatrice, foglio di calcolo) per studiare raccolte di dati e serie statistiche.
Lo studio sarà svolto il più possibile in collegamento con le altre discipline anche in contesti in cui i dati siano raccolti direttamente dagli studenti.
Lo studente dovrà essere in grado di ricavare semplici inferenze dai diagrammi statistici.
Sarà introdotta la nozione di probabilità, con esempi entro un contesto classico e con l’introduzione di nozioni di statistica.
Sarà introdotto in modo rigoroso e approfondito il concetto di modello matematico, distinguendone la specificità concettuale e metodica rispetto all’approccio della fisica classica. 

 

SECONDO BIENNIO

Aritmetica e algebra
Lo studio della circonferenza e del cerchio, del numero p, e di contesti in cui compaiono crescite esponenziali con il numero e, permetteranno di riprendere lo studio dei numeri reali, con riguardo alla tematica dei numeri trascendenti. In questa occasione sarà approfondita la formalizzazione dei numeri reali anche per iniziare lo studente alla problematica dell’infinito matematico (e alle sue connessioni con il pensiero filosofico). Sarà anche affrontato il tema del calcolo approssimato, sia dal punto di vista teorico sia mediante l’uso di strumenti di calcolo.
Saranno ripresi e approfonditi i concetti di vettore, di dipendenza e indipendenza lineare, di prodotto scalare e vettoriale nel piano e nello spazio. È lasciata alla scelta dell'insegnante l'introduzione del calcolo matriciale.
Si introdurranno i numeri complessi (forma algebrica, rappresentazione nel piano, forma trigonometrica, radici)

Geometria
Le sezioni coniche saranno presentate sia da un punto di vista geometrico sintetico che analitico. Lo studente sarà introdotto alla comprensione della specificità dei due approcci, sintetico e analitico, allo studio della geometria.
Saranno studiate le proprietà della circonferenza e del cerchio e il problema della determinazione dell'area del cerchio.
Sarà sviluppata la nozione di luogo geometrico, con alcuni esempi significativi.
Lo studio della geometria proseguirà con l'estensione allo spazio di alcuni dei temi della geometria piana, anche per sviluppare l’intuizione geometrica. In particolare, saranno studiate le posizioni reciproche di rette e piani nello spazio, il parallelismo e la perpendicolarità, nonché le proprietà dei principali solidi geometrici (in particolare dei poliedri e dei solidi di rotazione).

Relazioni e funzioni
Sarà affrontato il problema del numero delle soluzioni delle equazioni polinomiali.
Saranno presentati semplici esempi di successioni numeriche, anche definite per ricorrenza, e saranno studiate stituazioni in cui si presentano progressioni aritmetiche e geometriche.
Sarà approfondito lo studio delle funzioni elementari dell’analisi e, in particolare, delle funzioni esponenziale e logaritmo. Lo studente dovrà essere in grado di costruire semplici modelli di crescita o decrescita esponenziale, nonché di andamenti periodici, anche in rapporto con lo studio delle altre discipline. Ciò potrà essere fatto sia in un contesto discreto sia continuo.
Lo studente dovrà essere in grado di analizzare sia graficamente che analiticamente le principali funzioni, operare su funzioni composte e inverse. Sarà introdotto il concetto di velocità di variazione di un processo rappresentato mediante una funzione per aprire la strada all’introduzione del concetto di derivata.

Dati e previsioni
Come nel primo biennio, lo studio sarà sviluppato il più possibile in collegamento con le altre discipline e in contesti via via più complessi in cui i dati potranno essere raccolti direttamente dagli studenti. Saranno studiare le distribuzioni doppie condizionate e marginali, i concetti di deviazione standard, dipendenza, correlazione e regressione, e di campione.
Saranno studiate la probabilità condizionata e composta, la formula di Bayes e le sue applicazioni. Saranno introdotti gli elementi di base del calcolo combinatorio.
Sarà ulteriormente approfondito il concetto di modello matematico in relazione con le nuove conoscenze acquisite.

 

QUINTO ANNO
Nell'anno finale sarà approfondita la comprensione del metodo assiomatico e la sua utilità concettuale e metodologica anche dal punto di vista della modellizzazione matematica. È consigliabile sviluppare esempi nel contesto dell'aritmetica, della geometria euclidea o della probabilità ma è lasciato alla scelta dell'insegnante la decisione di quale settore disciplinare privilegiare allo scopo.

Geometria
L'introduzione delle coordinate cartesiane nello spazio permetterà di studiare dal punto di vista analitico rette, piani e sfere.

Relazioni e funzioni
Lo studente proseguirà lo studio delle funzioni fondamentali dell’analisi anche attraverso esempi tratti dalla fisica o da altre discipline.
Sarà introdotto il concetto di limite.
Saranno introdotti i principali concetti del calcolo infinitesimale – e, in particolare la continuità, la derivabilità e l’integrabilità – anche in relazione con le problematiche in cui è nato (velocità istantanea in meccanica, tangente di una curva, calcolo di aree e volumi). Non bisognerà restringersi agli aspetti tecnici del calcolo, che saranno limitati alla derivazione delle funzioni razionali, delle funzioni notevoli già studiate, di semplici prodotti, quozienti e composizioni di funzioni, e all’integrazione delle funzioni polinomiali intere e di altre funzioni elementari, nonché alla determinazione di aree e volumi in casi semplici. Si tratterà soprattutto di approfondirne il ruolo di strumento concettuale fondamentale nella descrizione e nella modellizzazione di fenomeni fisici
o di altra natura. In particolare, saranno introdotte l’idea generale di ottimizzazione e le sue applicazioni in numerosi contesti.

Dati e previsioni

Saranno studiate le caratteristiche di alcune distribuzioni discrete e continue di probabilità (come la distribuzione binomiale, la distribuzione normale, la distribuzione di Poisson).
Sarà ulteriormente approfondito il concetto di modello matematico in relazione con le nuove nozioni acquisite.